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Need for high resolution, for sea ice, and for a physically consistent solution. 

A first ECCO2 solution was obtained using a Green’s function approach to 
adjust a small number (~80) of model parameters. 

Early science applications include impact of mesoscale eddies on large-scale 
ocean circulation, studies of polar oceans, and ocean biogeochemistry,  

A follow-on ECCO2 solution is being obtained using the adjoint method to 
adjust  ~109 model parameters. 

http://ecco2.org/ 



Need for high resolution 

Eddy-parameterizations are not based upon fundamental principles and fail to 
adequately account for flow anisotropies leading to flux errors that accumulate 
and change large scale ocean circulation in important ways. 

Narrow western and eastern boundary currents make major contributions to 
scalar property transports but are not parameterizable.  Until they are resolved, 
there will be doubts that ocean models carry property transports realistically. 

Inability to resolve major topographic features (e.g., fracture zones, sills, 
overflows) leads to systematic errors in movement of deep water masses with 
consequences for accuracy of water mass formation and properties. 

Hill et al., 2007 



Need for sea ice 

Sea ice affects radiation balance, surface heat and mass fluxes, ocean 
convection, freshwater fluxes, human operations, etc. 

Sea-ice processes impact high-latitude oceanic uptake and storage of 
anthropogenic CO2 and other greenhouse gases. 

Inclusion of a dynamic/thermodynamic sea ice model permits fuller utilization of 
high-latitude satellite data. 

Kwok et al., 2008 



time 

Smoothed Estimate:  
 x(t+1)=Ax(t)+Gu(t) 

Filtered Estimate: x(t+1)=Ax(t)+Gu(t)+Δ(t) 
x: model state, u: forcing etc, Δ: data increment 

Model Physics: A, G 

Data increment: Δ

Need for physically consistent assimilation 

Data 

The temporal evolution of data assimilated estimates is physically inconsistent 
(e.g., budgets do not close) unless the assimilation’s data increments are 

explicitly ascribed to physical processes (i.e., inverted).  

I. Fukumori, JPL 



Example: Atmospheric Mass Budget 
Standard deviation of NCEP surface pressure analysis shows that, on average, 24% 
of the atmosphere’s mass change is physically unaccounted for (I. Fukumori, JPL). 

Change over 6-hours Data Increment 

mbar 

Atmospheric reanalyses contain huge air-sea flux imbalances.  Compare 6.2 cm/yr 
freshwater flux imbalance to observed 3 mm/yr sea level rise (P. Heimbach, MIT).  

1993-2003 global mean air-sea freshwater flux 



Example: Sensitivity of CO2 Sea Air Flux  

McKinley, 2002 

Filtered estimate of CO2 flux 
during 97-98 El Niño (mol/m2/yr) 

Smoothed estimate of CO2 flux 

Observed estimate of CO2 flux 
during 92-93 El Niño 

 Feely et al., 1999 



Data constraints: 
-  sea level anomaly 
-  time-mean sea level 
- sea surface temperature 
-  temperature and salinity profiles 
-  sea ice concentration 
-  sea ice motion 
-  sea ice thickness 

Control parameters: 
-  initial temperature and salinity conditions 
- atmospheric surface boundary conditions 
-  background vertical diffusivity 
- critical Richardson numbers for Large et al. (1994) KPP scheme 
- air-ocean, ice-ocean, air-ice drag coefficients 
-  ice/ocean/snow albedo coefficients 
- bottom drag and vertical viscosity 

1992-present Green’s function 
optimization of CS510 MITgcm 
model configuration 



Green’s Function Estimation Approach 
(Stammer & Wunsch, 1996; Menemenlis & Wunsch, 1997; Menemenlis et al., 2005) 

GCM:                                       x(ti+1)  =  M(x(ti),η) 

Data:                                          yo  =  H(x) + ε                   =  G(η) + ε 

Cost function:                              J  =  ηTQ-1η + εTR-1ε 

Linearization:                       G(η)  ≈  G(0) + Gη 

G is an n×p matrix, where n is the number of observations in vector yo and p is 
the number of parameters in vector η.  Each column of matrix G can be 
determined by perturbing one element of η, that is, by carrying out one GCM 
sensitivity experiment. 

GCM-data residual:                  yd  =  yo – G(0)                  ≈  Gη + ε 

Solution:                                   ηa  =  PGTR-1yd 

Uncertainty covariance:           P  =  ( Q-1 + GTR-1G )–1 

The solution satisfies the GCM’s prognostic equations exactly and hence it can 
be used for budget computations, tracer problems, etc. 



Assessment of ECCO2 vs GODAE/CLIVAR metrics (H. Zhang) 

0-750-m Temperature 0-750-m Salinity 

WOA05 

1992−2002 
baseline/ 
WOA05 
difference 

1992−2002 
optimized/ 
WOA05 
difference 



Assessment of ECCO2 in Arctic Ocean (A. Nguyen) 

Arctic cost function reduction 

Canada Basin Hydrography 

2007-2008 summer sea ice minima 

Sea ice velocity comparison with SSM/I 

Baseline/data difference Optimized/data difference 



Drake passage transport and variability 

Baseline 

Optimized 
Sloyan & 
Rintoul, 2001 

Assessment of ECCO2 in Southern Ocean (M. Schodlok) 

GRACE 



Modeling of ice shelf cavities (M. Schodlok) 

Melt rate dh/dt 2004 (m/yr) 

Antarctic ice shelf thickness (m) 



Example eddying ocean circulation studies 

Eddy propagation velocities (Fu, 2006) 
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The role of vorticity fluxes in the dynamics of the 
Zapiola Anticyclone (Volkov & Fu, 2008) 

eddy kinetic energy (cm
2/s2) 

Estimated global hydrographic variability 
(Forget & Wunsch, 2007) 
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Example Arctic Ocean studies 

Modeling transport, fate and lifetime of riverine DOC in the 
Arctic Ocean (Manizza et al., in press). 

Response of the Arctic freshwater budget to 
extreme NAO forcing (Condron et al., 2009). 

Sea ice model and adjoint development 
(Campin et al., 2008; Nguyen et al., in press; 
Losch et al., submitted; Heimbach et al., submitted). 

Variability of sea ice simulations assessed with RGPS 
kinematics (Kwok et al., 2008). 



Example ocean biogeochemistry study 

Regulation of phytoplankton diversity by ocean physics 
(M. Follows,  A. Barton, S. Dutkiewicz, J. Bragg, S. Chisholm, C. Hill, & O. Jahn)  

Chlorophyll-a estimated using a self-assembling ecosystem model 



CS510 adjoint optimization during ARGO period (H. Zhang) 
Cost function reduction 

Iteration 3 vs baseline SST change on Aug 27, 2004 

Cost function reduction 
vs ARGO salinity 

Cost function reduction 
vs ARGO temperature 



Summary 

ECCO2 is demonstrating feasibility and utility of physically consistent ocean 
data assimilation in the presence of eddies and ice. 

A first solution was obtained using a Green’s function approach to adjust a 
small number (~80) of model parameters. 

Ocean model includes explicit representation of Antarctic ice shelf cavities. 

Early science applications include impact of mesoscale eddies on large-scale 
ocean circulation, studies of polar oceans, and ocean biogeochemistry,  

A follow-on solution is being obtained during the ARGO period using the adjoint 
method to adjust  ~109 model parameters. 

ECCO2 solutions and estimation tools are available at http://ecco2.org/ 


